AIDBとは


AIDBは、論文などの文献に基づいてAIの科学技術や市場にキャッチアップするためのサービスです。個人の研究や仕事探し、法人の調査や採用を支援します。2019年から運営しています。

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録

日本ディープラーニング協会

お問い合わせはこちら

次回の更新記事:会議出席代行システム LLMでどこまでできるか(公開予定日:2025年02月25日)

LLM科学者と人間の協力で実験の効率化 Googleなど

本記事では、LLMを活用した科学実験の進...
Read More

100万ドル分のソフトウェアエンジニアリング業務に挑む

LLMがめざましく高度化しているにもかか...
Read More

「LLM活用で文書作成」社会でどこまで導入されている

本記事では、LLMが社会のさまざまな分野...
Read More

LLMを擬人化することに対する見解

本記事では、LLMを「人間らしいもの」と...
Read More

LLM専用の「新しい言葉」を導入 Google DeepMind

本記事では、LLMの理解と制御に向けて新...
Read More

AIDBプレミアム会員特典のお知らせ

情報収集と学習を継続されている皆さまに対...
Read More

「すべてのソフトウェアをエージェントとして使う」ビジョンと実践例

ソフトウェアを自然言語で操作する新しい手...
Read More

「職業別にみるLLM活用の現状と今後」Anthropicが大規模調査 

これまで広い視野での「LLMによる仕事の...
Read More

o3-miniクイズ

*前回はDeepSeekについてのクイズ...
Read More

LLM科学者と人間の協力で実験の効率化 Googleなど
100万ドル分のソフトウェアエンジニアリング業務に挑む
「LLM活用で文書作成」社会でどこまで導入されている
LLMを擬人化することに対する見解
LLM専用の「新しい言葉」を導入 Google DeepMind
AIDBプレミアム会員特典のお知らせ
「すべてのソフトウェアをエージェントとして使う」ビジョンと実践例
天井が見え始めたこれまでのLLMベンチマークを超える究極の問題集 DeepSeek-R1もテスト
「職業別にみるLLM活用の現状と今後」Anthropicが大規模調査 
o3-miniクイズ
「Pandasデータフレームの欠損値を確認せよ! 」AIクイズ実装編【第7問】
「配列をpandasデータフレームにせよ! 」AIクイズ実装編【第6問】
「モデル作成後の評価法は? 」AIクイズ実装編【第5問】
「scikit-learnで最小二乗法! 」AIクイズ実装編【第4問】
「pandasでcsvファイルを読み取る! 」AIクイズ実装編【第3問】
「numpy配列の行数と列数を取得せよ! 」AIクイズ実装編【第2問】
「データを訓練データとテストデータに分割せよ! 」AIクイズ実装編【第1問】
「クラスタリングの評価手法『ARIやNMI』の欠点は? 」AIクイズscikit-learn編【第5問】
「DBCANの正しい説明とは? 」AIクイズscikit-learn編【第4問】
「凝集型クラスタリングとは? 」AIクイズscikit-learn編【第3問】
「t-SNEは何次元のデータを可視化できる? 」AIクイズscikit-learn編【第2問】
「非負値行列因子分解(NMF)とは? 」AIクイズscikit-learn編【第1問】
「ディープラーニングの応用分野はどれ? 」AIクイズ応用編【第30問】
「Pythonのグラフ描画ライブラリはどれ?」AIクイズ応用編【第29問】
「ニューラルネットワークの学習の流れ、分かる?」AIクイズ応用編【第28問】
LLM科学者と人間の協力で実験の効率化 Googleなど
100万ドル分のソフトウェアエンジニアリング業務に挑む
「LLM活用で文書作成」社会でどこまで導入されている
LLMを擬人化することに対する見解
LLM専用の「新しい言葉」を導入 Google DeepMind
「すべてのソフトウェアをエージェントとして使う」ビジョンと実践例
天井が見え始めたこれまでのLLMベンチマークを超える究極の問題集 DeepSeek-R1もテスト
「職業別にみるLLM活用の現状と今後」Anthropicが大規模調査 
DeepSeek-R1の性能を検証 4つの主要LLMと比較
LLMの定理証明力を2倍に向上させる「予想と証明を繰り返させる」手法 限られたデータの中で
LLMを活用した「Text to CAD」 テキスト指示から高品質な3Dモデルを作成する
「自己修正機能を備えたプログラム合成」を実現するためのLLMエージェンティックワークフロー
学習者の目標達成をサポートするLLMシステムの開発
OpenAIの思考プロセスを重視した言語モデルo3-mini その能力と安全性
OpenAI o3-miniの安全機能に関する大規模検証 1万件超のテスト結果 
人間の集団が持つアイデアはAIによって多様性が向上することが研究で示唆されています。
数学オリンピックの金メダリストと似たレベルで幾何学問題を解くAIシステムをDeepMindが開発したことがNatureで報告されています。
JPモルガンの研究者らは、企業のドキュメントをLLMで読み込むモデル『DocLLM』を発表しました。
視覚・テキスト・音声そして行動データを処理するマルチモーダルLLM「Unified-IO 2」を開発したと報告されています。
オセロで「完璧な手を打ち続けた結果は引き分けである」ことを証明する研究が発表されました。
現時点でのLLMに対する網羅的な評価分析が行われました。
LLMと遺伝的アルゴリズムを使用して、個性によって社会集団の行動がどのように変化していくのかを観察する挑戦的な研究が行われました。
特定の個人の好みやニーズに最も適したレスポンスや行動を行うLLMを開発する手法、『Personalized Soups(意訳:ぼくだけのためのスープ)』が開発されました。
「DALL-E 3はどうしてユーザーの意図を正確に汲み取ることができるのか?」に対するOpenAIの論文が発表されました。
電気回路図などの図表をテキストのみから生み出すLLM駆動のフレームワーク『DiagrammerGPT(ダイアグラマーGPT)』が登場しました。
GPT-4との対話でタスクプランニングを行うロボットシステムフレームワークが発明されました。
GPT-4などLLMのコード生成能力にデバッグ機能を追加する『SELF-DEBUGGING(セルフデバッギング)』フレームワークが考案されました。
LLMがソフトウェアエンジリアリングにおいて現時点で役に立つこと&課題。Metaなどの研究者らが報告
OpenAIは、DALL·E 3の論文を通して「画像生成AIの安全性は前進した」ことを報告しています。
トヨタから「栽培しなくても作物の特性がわかるAI」の特許が出願。なぜ?
主要な世界的AI研究機関(企業)が自社の論文を掲載しているWebページまとめ
AIによる「電力予測」どこまで進んでる?研究事例まとめ
「投資」にAIを活用した研究事例まとめ【解説あり】
「農業」や「畜産」にAIを活用した研究事例まとめ【解説あり】
「食品の品質管理」にAIを活用した研究事例まとめ【解説付き】
「学会レポート」特集!記事一覧
「AI研究者が語る」特集!記事一覧
「AI時代のメンタリズム」特集!記事一覧
「AI×釣り」特集!記事一覧
「AIアプリやってみた」特集!記事一覧
「StyleGAN」特集!記事一覧
「G検定・E資格」特集!
「東大生AI初心者じゅんぺーの学習日誌」特集!記事一覧

AIDBとは


AIDBは、論文などの文献に基づいてAIの科学技術や市場にキャッチアップするためのサービスです。個人の研究や仕事探し、法人の調査や採用を支援します。2019年から運営しています。

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録

日本ディープラーニング協会

お問い合わせはこちら

PAGE TOP