LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

LLMの機能別「領域」はまるで脳のようであるとの仮説

本記事では、LLMの内部で発見された驚く...
Read More

プロンプト

直感に頼るようなタスクだとLLMに「ステップバイステップで考えて」は逆効果
手の込んだ手法よりシンプルな手法の方がLLMは幻覚を起こしにくい 問題に応じて戦略を変える必要性
コンテキスト内で重要な情報同士が離れすぎるとLLMの性能は大幅に下がる
LLMには正解例だけでなく、「よくある間違い例」と理由も一緒に教えるのが有効
LLMの推論能力は単純に文脈を繰り返すだけでも大幅に向上 最大で30%改善
「あなたは〇〇です」などのペルソナ設定を与えても、事実に基づく質問への回答精度は向上しないとの主張
対話の中でユーザーの好みを学ぶ手法『CIPHER』 (プロンプトテンプレートあり)
専門家が作成したプロンプトと同等以上の性能を達成する自動プロンプト生成手法『Minstriel』
PAGE TOP