LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

LLMの機能別「領域」はまるで脳のようであるとの仮説

本記事では、LLMの内部で発見された驚く...
Read More

RAG

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど
「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ
ロングコンテキストLLMでも、情報の数は「多ければ多いほど良い」わけではない
ハーバード大学とGoogleの研究者ら、LLMチャットボットを総合的に評価するデータセットの作り方を報告(作成されたデータセットも公開)
ロングコンテキストLLM台頭の今もRAGを使用する理由
RAGの検索データにおける「ノイズ(事実とは異なる情報など)」には有益なノイズと有害なノイズがある
RAGの検索精度を実務レベルに高めるには、「情報ごとに ”質問文” を作りデータベースに入れる」のが効果的との報告
RAGで検索文書の要約を活用したクエリ書き換えが検索精度を大幅に向上させる AWS報告
PAGE TOP