LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

LLM

LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
RAG(検索拡張生成)において約半分のトークン数でタスクを実行できるフレームワーク『FIT-RAG』
「ゲームでのLLM」における調査結果 プレイヤー・NPC・ゲームマスターなど様々な役割を網羅的に整理
人はディベートで人よりもGPT-4が相手のとき81.7%高い確率で意見を変える(つまり討論に負ける)傾向にあったとの実験報告
RAGにおいてLLMが「役立たない情報を無視」できるようにする『RAFT』QAタスクで従来の手法を大幅に上回る結果を達成
Microsoftなどのプロンプト圧縮技術『LLMLingua-“2″』タスクの精度を維持したまま圧縮率2-5倍
Googleなど、API経由でブラックボックスLLMの隠れ次元数を特定できる脆弱性を示す ※OpenAI社はこれを受け対策済み
GPT-4などのLLMがセキュリティ脆弱性とソフトウェア機能性の評価能力で高い精度を示す
PAGE TOP