最新の記事:科学は「研究」と「査読」両方が加速していく AIと…
「論文データベース(β版)」公開しました!新着論文を日本語で検索できます。ぜひご活用ください。 見てみる

大規模言語モデル(LLM)のこれまでとこれから④ -ベンチマーク別の優秀なモデルと将来展望編-

2024.02.19
深堀り解説

本記事では、LLM研究全体の背景と現状、そして将来展望を網羅的に整理する調査論文をもとに、LLMの基礎を振り返ります。ここまで、代表的なモデル、モデル構築、使用法・拡張法、データセットについて深掘りしてきました。

第1回:大規模言語モデル(LLM)のこれまでとこれから① -代表的なモデル編-
第2回:大規模言語モデル(LLM)のこれまでとこれから② -モデル構築編-
第3回:大規模言語モデル(LLM)のこれまでとこれから③ -使用法・拡張法、データセット編-

今回は、本シリーズの最終章として、ベンチマーク別の優秀なモデルと将来展望について紹介します。

参照論文情報

  • タイトル:Large Language Models: A Survey
  • 著者:Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Amatriain, Jianfeng Gao
  • 所属:論文には所属機関が示されていないため各機関から有志の研究グループが結成されたことが推測されます。
  • URL:https://doi.org/10.48550/arXiv.2402.06196

前回のおさらい

前回は、以下の項目に沿ってLLMの使用法・拡張法、データセットに触れました。

  • LLMの不足
  • LLMのプロンプトエンジニアリング

    • 思考の連鎖(CoT)、思考の木(ToT)、自動プロンプトエンジニアリング(APE)など

  • 外部知識を通じてLLMを拡張する手法RAG
  • 外部ツールの使用
  • LLMエージェント
  • 基本タスクのデータセット
  • 指示に従うためのデータセット
  • 外部知識/ツールを使用した拡張のためのデータセット

本記事では、さまざまなベンチマークごとの優秀なモデルと、将来展望にフォーカスします。

主要なLLMの各ベンチマークにおける性能

LLMを評価する代表的な評価指標と、データセットやベンチマークごとの各種LLMの性能を紹介します。

プレミアム会員限定コンテンツです

無料会員でもできること

  • 一部記事の閲覧
  • 研究紹介短信ライブラリの基本機能
  • プロンプト管理ツールの利用

プレミアム会員の特典

  • 全過去記事の無制限閲覧
  • 専門家による最新リサーチ結果を記事で購読(平日毎日更新)
  • 日本語検索対応の新着AI論文データベース
  • 研究紹介短信ライブラリの高度な機能を開放
  • 記事内容質問AIを使用可能に
  • プロンプト管理ツールの無制限使用

記事検索

年/月/日
年/月/日

関連記事