次回の更新記事:会議出席代行システム LLMでどこまでできるか(公開予定日:2025年02月25日)

LLM科学者と人間の協力で実験の効率化 Googleなど

本記事では、LLMを活用した科学実験の進...
Read More

100万ドル分のソフトウェアエンジニアリング業務に挑む

LLMがめざましく高度化しているにもかか...
Read More

「LLM活用で文書作成」社会でどこまで導入されている

本記事では、LLMが社会のさまざまな分野...
Read More

LLMを擬人化することに対する見解

本記事では、LLMを「人間らしいもの」と...
Read More

LLM専用の「新しい言葉」を導入 Google DeepMind

本記事では、LLMの理解と制御に向けて新...
Read More

AIDBプレミアム会員特典のお知らせ

情報収集と学習を継続されている皆さまに対...
Read More

「すべてのソフトウェアをエージェントとして使う」ビジョンと実践例

ソフトウェアを自然言語で操作する新しい手...
Read More

「職業別にみるLLM活用の現状と今後」Anthropicが大規模調査 

これまで広い視野での「LLMによる仕事の...
Read More

o3-miniクイズ

*前回はDeepSeekについてのクイズ...
Read More

論文

GPT-4のコード生成能力を飛躍的に向上させるプロンプトフレームワーク『AlphaCodium』
Metaなどの研究者らが、LLMが自分自身に報酬を与える「自己報酬言語モデル」を開発
外部からの攻撃で一度でも欺瞞を学んだLLMは現在の技術では完全回復が難しい
プロンプトの小さな違いがLLMにもたらすバタフライ効果を調査した結果
最高水準のオープンソースLLM『Mixtral 8x7B』は内部で専門家が切り替わる高効率モデル
CoTの推論ステップ数がLLMの推論能力に及ぼす影響を詳細に検証した結果
Googleなどが開発、LLMに表データ(.csvなど)の情報を深く理解させるためのフレームワーク『Chain of Table』
LLMの知識を狙い撃ちして変更・修正する「知識編集(Knowledge Editing)」
LLMに「自分自身との対戦」で能力を向上させる手法『Self-Play Fine-Tuning(SPIN)』
1.1Bパラメータの小さなモデルを巨大データ(約3兆トークン)で訓練したモデル『TinyLlama』が、比較的優秀な性能を発揮
PAGE TOP