次回の更新記事:会議出席代行システム LLMでどこまでできるか(公開予定日:2025年02月25日)

投稿者の過去記事

LLMの思考の流れに沿ってプロンプトを与えるか否かで30%以上精度が変化する DeepMindが報告
大規模言語モデル(LLM)のこれまでとこれから④ -ベンチマーク別の優秀なモデルと将来展望編-
大規模言語モデル(LLM)のこれまでとこれから③ -使用法・拡張法、データセット編-
大規模言語モデル(LLM)のこれまでとこれから② -モデル構築編-
大規模言語モデル(LLM)のこれまでとこれから① -代表的なモデル編-
LLMにタスクに応じた推論プロセスを自ら考えるようにするプロンプト手法『SELF-DISCOVER』Google DeepMindなどが開発
LLMに敢えて間違わせてルールを覚えさせるプロンプト手法 Google DeepMindなどが考案
ファインチューニングデータが十分に大きい場合、タスク性能向上に追加の事前学習は不要の可能性 Googleなどによるスケーリング則の実験から
GPT-4にRAG(検索拡張生成)を適用するケーススタディ 臨床問題で人間の医師よりも高い精度を達成
ナレッジグラフ(知識グラフ)とLLMを掛け合わせる方法のロードマップ

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録
PAGE TOP