次回の更新記事:会議出席代行システム LLMでどこまでできるか(公開予定日:2025年02月25日)

投稿者の過去記事

「ポジティブ思考」プロンプトでLLMの性能向上 さらに自動最適化プロンプトが上をいくが、奇妙な現象も
「人間の自然言語を超えて」LLMにタスク実行時の思考を非自然言語フォーマットで行わせるプロンプト手法『AutoForm(オートフォーム)』
RAGにおいて取得された情報と事前知識が矛盾しても、情報に説得力があるときLLMは受け入れる
LLMに無礼なプロンプトを使用すると性能が低下するリスクの報告 一部、直感に反する複雑な結果も
GPT-4やGeminiなどさまざまなLLMで、プロンプトの入力が長くなるにつれて推論性能に顕著な低下が見られる
LLMの「心の理論」能力を詳しく調べるためのベンチマーク『OpenToM』 GPT-4など複数モデルの評価結果
GPT-4などに対してプロンプトのみから「新しい言葉の概念」を学習させるためのフレームワーク『FOCUS』
深層ニューラルネットワークの学習プロセスを運動方程式で表すことに成功 研究者本人が解説(NEC宮川大輝氏)
小さなLLMを多数組み合わせることで、単一の巨大モデルに匹敵する可能性
ユーザーの指示が曖昧なとき、LLM側が確認を行うエージェントアーキテクチャ『Mistral-Interact』

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録
PAGE TOP