次回の更新記事:Web3向けLLMエージェントOS登場 オープンソースの新…(公開予定日:2025年01月20日)

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

ハーバード大学の研究者らによる「現時点で、AIは研究にどう役立つのか」調査と論考
LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
RAG(検索拡張生成)において約半分のトークン数でタスクを実行できるフレームワーク『FIT-RAG』
「ゲームでのLLM」における調査結果 プレイヤー・NPC・ゲームマスターなど様々な役割を網羅的に整理
人はディベートで人よりもGPT-4が相手のとき81.7%高い確率で意見を変える(つまり討論に負ける)傾向にあったとの実験報告
RAGにおいてLLMが「役立たない情報を無視」できるようにする『RAFT』QAタスクで従来の手法を大幅に上回る結果を達成
Microsoftなどのプロンプト圧縮技術『LLMLingua-“2″』タスクの精度を維持したまま圧縮率2-5倍
Googleなど、API経由でブラックボックスLLMの隠れ次元数を特定できる脆弱性を示す ※OpenAI社はこれを受け対策済み

AIDBの新サービス

チャットボットで意味ベースの検索

AIDB Seeker(ChatGPTのGPTsを起動します)

日本ディープラーニング協会

お問い合わせはこちら

PAGE TOP