LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

LLMに無礼なプロンプトを使用すると性能が低下するリスクの報告 一部、直感に反する複雑な結果も
GPT-4やGeminiなどさまざまなLLMで、プロンプトの入力が長くなるにつれて推論性能に顕著な低下が見られる
LLMの「心の理論」能力を詳しく調べるためのベンチマーク『OpenToM』 GPT-4など複数モデルの評価結果
GPT-4などに対してプロンプトのみから「新しい言葉の概念」を学習させるためのフレームワーク『FOCUS』
深層ニューラルネットワークの学習プロセスを運動方程式で表すことに成功 研究者本人が解説(NEC宮川大輝氏)
小さなLLMを多数組み合わせることで、単一の巨大モデルに匹敵する可能性
ユーザーの指示が曖昧なとき、LLM側が確認を行うエージェントアーキテクチャ『Mistral-Interact』
LLMの思考の流れに沿ってプロンプトを与えるか否かで30%以上精度が変化する DeepMindが報告
PAGE TOP