★AIDB会員限定Discordを開設いたしました!
ログインの上、マイページをご覧ください。
本記事では、LLMのリスクと対策に関する研究を紹介します。
LLMの急速な普及に伴い、安全性と信頼性の確保が重要な課題となっています。
今回研究者らは主なリスクをいくつかのカテゴリーに分け、それらリスクに対処するための技術、そして対策を行う上での課題についてまとめました。
なお記事の最後で、LLMの安全性向上のために開発されているオープンソースツールも紹介します。
参照論文情報
- タイトル:Current state of LLM Risks and AI Guardrails
- 著者:Suriya Ganesh Ayyamperumal, Limin Ge
- 所属:Carnegie Mellon University
背景
LLMは急速に高度化が進み、様々な分野で使用されるようになりつつあります。しかし、LLMの使用には本質的なリスクが伴うことも分かっています。そこでLLMの安全性と信頼性を確保するための「ガードレール」(安全装置)の開発が必要不可欠となっています。ガードレールとは、LLMの動作を望ましい方向に制御し、潜在的なリスクを軽減するための仕組みを指します。
LLMの主なリスクは、バイアス(偏見)、安全でない行動、データセットの汚染、説明可能性の欠如、ハルシネーション(幻覚とも呼ぶ。事実と異なる情報の生成)、再現性の欠如などが挙げられます。これらのリスクはLLMのアプリケーションを展開する際の懸念事項となっています。
そこで今回カーネギーメロン大学の研究者らは、LLMのリスクを改めて深掘りし、現在のガードレール技術を評価してまとめました。なお、調査の中で特に注目されたのは、実世界に影響を及ぼしうるLLMエージェントの安全性と信頼性です。
以下で詳しく紹介します。
また記事の購読には、アカウント作成後の決済が必要です。
※ログイン/初回登録後、下記ボタンを押してください。
AIDBとは
プレミアム会員(記事の購読)について
■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。