次回の更新記事:Web3向けLLMエージェントOS登場 オープンソースの新…(公開予定日:2025年01月20日)

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

ファインチューニング

単一のLLMから2つのエージェントを作成し自分(たち)で改善させる手法が有効
LLMによるニュース報道の広がり分析を活用した株価変動予測手法
ロングコンテキストLLMでも、情報の数は「多ければ多いほど良い」わけではない
LLMに専門的なドメイン知識を学ばせるのに有効な「読解タスクテキストに変換する」テクニック
ファインチューニングがLLMの幻覚(ハルシネーション)に与える影響 Googleなどによる検証結果
LLMのプロンプトに数百から数千の例を含める超長尺のコンテキスト内学習(In-context learning)とファインチューニングの性能比較
スクショからHTMLとCSSのコードをLLMが生成する『Design2Code』タスク、プロンプト手法やファインチューニングで高い性能を確認
大規模言語モデル(LLM)のこれまでとこれから③ -使用法・拡張法、データセット編-
PAGE TOP