次回の更新記事:Web3向けLLMエージェントOS登場 オープンソースの新…(公開予定日:2025年01月20日)

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

LLMの検索結果をさらに正確にする手法『CRAG』(Corrective Retrieval Augmented Generation:修正型の検索拡張生成)
LLMを軽くする効果的な剪定手法『SliceGPT』
RAGシステムに「無関係な」文書を混ぜたほうがLLMの出力精度が上がる可能性が示唆された
LLMに「自信の度合いに応じて説明のニュアンスを変更させる」ことがユーザーの誤解を回避する
ファインチューニングとRAGを比較実験した結果 LLMに外部知識を取り入れる手法としての違い
マルチモーダルLLMの技術や開発トレンド、26種類のモデル例を網羅的にまとめた報告
人間の集団が持つアイデアはAIによって多様性が向上することが研究で示唆されています。
GPT-4レベルの質問応答タスク性能をオープンソースモデルのLlama 2で実現する「ChatQA」NVIDIAが開発

AIDBの新サービス

チャットボットで意味ベースの検索

AIDB Seeker(ChatGPTのGPTsを起動します)

日本ディープラーニング協会

お問い合わせはこちら

PAGE TOP