最新の記事:科学は「研究」と「査読」両方が加速していく AIと…
「論文データベース(β版)」公開しました!新着論文を日本語で検索できます。ぜひご活用ください。 見てみる

LLMの推論能力は単純に文脈を繰り返し提示するだけでも大幅に向上 最大で30%改善

2024.10.15
深堀り解説

本記事では、LLMの多段階推論能力を向上させるために考案された新しい手法について紹介します。

研究者らは、「文脈を繰り返し提示する」という単純な方法が、LLMの推論性能を大幅に改善することを突き止めました。LLMが「文書の順序」に対して敏感であるという問題への解決策です。

背景

複数の文書を参照しながら段階的に推論を進める「多段階推論」と呼ばれるタスクは、LLMにとってまだ難しい課題となっています。質問に関連する複数の文書から役立つ情報を探し出し、それらを組み合わせて答えを導き出す必要があるタスクです。

多段階推論では、LLMはいくつかの課題に直面します。まず、答えに関係のない情報をうまく除外できないことがあります。また、文章の位置によって推論の精度が大きく変わってしまうという問題もあります。実際、長い文脈の中央部分にある情報は、モデルに見落とされてしまうことがあります。

さらに「文書が提示される順序によってLLMの推論性能が大きく変わってしまう問題」もあります。例えば、同じ内容の文書でも、提示順序を変えるだけで回答の正確さが変わってしまいます。

この「文書の順序による問題」は、実際のタスクでは避けられない課題です。なぜなら、LLMに最適な順序で文書を提示できる保証がないからです。

そこで研究者らは、この問題を解決するための新しい方法を提案しています。与えられた文脈(複数の文書)を繰り返し提示することで、LLMが最適な順序で文書を理解できるようにするというものです。

本手法の詳細と実験結果を以下に紹介します。

プレミアム会員限定コンテンツです

無料会員でもできること

  • 一部記事の閲覧
  • 研究紹介短信ライブラリの基本機能
  • プロンプト管理ツールの利用

プレミアム会員の特典

  • 全過去記事の無制限閲覧
  • 専門家による最新リサーチ結果を記事で購読(平日毎日更新)
  • 日本語検索対応の新着AI論文データベース
  • 研究紹介短信ライブラリの高度な機能を開放
  • 記事内容質問AIを使用可能に
  • プロンプト管理ツールの無制限使用

記事検索

年/月/日
年/月/日

関連記事