LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

論文

LLMの化学的能力はどれほどか 最先端LLMと人間を比較した結果
ハーバード大学の研究者らによる「現時点で、AIは研究にどう役立つのか」調査と論考
LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
RAG(検索拡張生成)において約半分のトークン数でタスクを実行できるフレームワーク『FIT-RAG』
「ゲームでのLLM」における調査結果 プレイヤー・NPC・ゲームマスターなど様々な役割を網羅的に整理
人はディベートで人よりもGPT-4が相手のとき81.7%高い確率で意見を変える(つまり討論に負ける)傾向にあったとの実験報告
RAGにおいてLLMが「役立たない情報を無視」できるようにする『RAFT』QAタスクで従来の手法を大幅に上回る結果を達成
Microsoftなどのプロンプト圧縮技術『LLMLingua-“2″』タスクの精度を維持したまま圧縮率2-5倍
PAGE TOP