LLMが長々と説明するときは自信がない傾向にある 14個のモデルで検証

本記事では、LLMが「答えに自信がない時...
Read More

LLMプロジェクト開発に必要な新しい概念「AgentOps」とは

本記事では、LLMエージェントを安全に開...
Read More

画像も文字も表も全部まとめて理解するRAGシステムの提案 Bloombergなど

本記事では、複数の文書やページから図や表...
Read More

LLMにおける長文処理能力の進化を調査 Claude 3.5は情報の流れを追跡するスキルに長ける

本記事では、LLMの長文処理能力について...
Read More

「HTMLをそのままLLMに入力してはどうか」という新しいアプローチ

本記事では、LLMの精度向上のために用い...
Read More

LLMにベートーヴェンなど特定の人物の行動や感情を模倣させる、イタコのような技術『Character-LLM(キャラクターLLM)』
LLMと遺伝的アルゴリズムを使用して、個性によって社会集団の行動がどのように変化していくのかを観察する挑戦的な研究が行われました。
特定の個人の好みやニーズに最も適したレスポンスや行動を行うLLMを開発する手法、『Personalized Soups(意訳:ぼくだけのためのスープ)』が開発されました。
LLMがソフトウェアエンジニアリングでどのように適用可能か、網羅的な調査&分析結果
「DALL-E 3はどうしてユーザーの意図を正確に汲み取ることができるのか?」に対するOpenAIの論文が発表されました。
電気回路図などの図表をテキストのみから生み出すLLM駆動のフレームワーク『DiagrammerGPT(ダイアグラマーGPT)』が登場しました。
LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』
LLMにまず前提から尋ることで出力精度を向上させる『ステップバック・プロンプティング』と実行プロンプト
PAGE TOP