SNSでも発信中

企業と働き手を繋ぐマッチングサービスはこちらから


AIDBとは


AIDBは、論文などの文献に基づいてAIの科学技術や市場にキャッチアップするためのサービスです。個人の研究や仕事探し、法人の調査や採用を支援します。2019年から運営しています。

日本ディープラーニング協会

次回の更新記事:LLMでユースケース図の作成時間を大幅に短縮 3つの…(公開予定日:2025年11月17日)

LLMに敢えて間違わせてルールを覚えさせるプロンプト手法 Google DeepMindなどが考案
ファインチューニングデータが十分に大きい場合、タスク性能向上に追加の事前学習は不要の可能性 Googleなどによるスケーリング則の実験から
GPT-4にRAG(検索拡張生成)を適用するケーススタディ 臨床問題で人間の医師よりも高い精度を達成
ナレッジグラフ(知識グラフ)とLLMを掛け合わせる方法のロードマップ
複数LLMに議論させ、「回答に自信がないときは発言を控えさせ」て応答品質を向上する方法
LLMの検索結果をさらに正確にする手法『CRAG』(Corrective Retrieval Augmented Generation:修正型の検索拡張生成)
LLMを軽くする効果的な剪定手法『SliceGPT』
RAGシステムに「無関係な」文書を混ぜたほうがLLMの出力精度が上がる可能性が示唆された
LLMに「自信の度合いに応じて説明のニュアンスを変更させる」ことがユーザーの誤解を回避する
ファインチューニングとRAGを比較実験した結果 LLMに外部知識を取り入れる手法としての違い
マルチモーダルLLMの技術や開発トレンド、26種類のモデル例を網羅的にまとめた報告
人間の集団が持つアイデアはAIによって多様性が向上することが研究で示唆されています。
GPT-4レベルの質問応答タスク性能をオープンソースモデルのLlama 2で実現する「ChatQA」NVIDIAが開発
既存のLLMを融合させて強力なモデルを作る手法「知識融合」
LLMに自分自身の内部動作を説明させる手法

SNSでも発信中

企業と働き手を繋ぐマッチングサービスはこちらから


AIDBとは


AIDBは、論文などの文献に基づいてAIの科学技術や市場にキャッチアップするためのサービスです。個人の研究や仕事探し、法人の調査や採用を支援します。2019年から運営しています。

日本ディープラーニング協会

PAGE TOP