次回の更新記事:Web3向けLLMエージェントOS登場 オープンソースの新…(公開予定日:2025年01月20日)

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

RAG

検索結果をLLMでチェックして自動的に再検索する『MetaRAG』出力精度を大幅に向上
RAGにおいて取得された情報と事前知識が矛盾しても、情報に説得力があるときLLMは受け入れる
大規模言語モデル(LLM)のこれまでとこれから③ -使用法・拡張法、データセット編-
GPT-4にRAG(検索拡張生成)を適用するケーススタディ 臨床問題で人間の医師よりも高い精度を達成
LLMの検索結果をさらに正確にする手法『CRAG』(Corrective Retrieval Augmented Generation:修正型の検索拡張生成)
RAGシステムに「無関係な」文書を混ぜたほうがLLMの出力精度が上がる可能性が示唆された
ファインチューニングとRAGを比較実験した結果 LLMに外部知識を取り入れる手法としての違い
LLMのRAG(外部知識検索による強化)をまとめた調査報告
PAGE TOP