次回の更新記事:推論時のトークン数を80%以上削減しながら出力精度を…(公開予定日:2025年03月17日)

記事スタイル

CoT(思考の連鎖)は数学や論理で劇的に性能を向上させる一方、常識や知識のタスクでほとんど効果がない
医療のような専門分野におけるLLMの性能は「知識グラフと再ランキングの併用」で大幅に向上(東京大学Irene Li氏)
GPT-4oに”嘘をつく理由”を与えると正直さが約32.5%減少 LLMは役割に応じて”正直さ”が変化する
単純に生成回数を増やすとLLMの性能が大幅に向上する「推論時のスケーリング則」
リアルなWindowsOS環境でのエージェント能力を評価する『WindowsAgentArena』およびエージェント『Navi(ナビ)』Microsoftが開発
ノーコードでLLMマルチエージェントを操る『AUTOGEN STUDIO』Microsoftが新開発
Self-Reflection(自己反省)がLLMのパフォーマンスに与える影響を網羅的に調査
100人以上の研究者が実験参加 LLMは人間より優れた研究アイデアを思いつくのか?
LLMの推論能力を戦略的に向上させる新しいプロンプト手法『SCoT』
AIコーディング補助ツール(GitHub Copilot)で開発者の生産性が26%向上 Microsoft・アクセンチュアなど3社の大規模調査結果

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録
PAGE TOP