LLMによるText to SQL(SQLクエリ生成)の現状まとめ

本記事では、LLMを活用したText-t...
Read More

LLMの作るストーリーは人間のクリエイティブとどう異なるか

本記事では、LLMが物語を生成する能力を...
Read More

LLMで心理評価をゲーミフィケーションする方法

本記事では、心理評価のアプローチを進化さ...
Read More

エージェントなしで行うLLMによるソフトウェアのバグ修正手法

本記事では、ソフトウェア開発におけるバグ...
Read More

心の理論をLLMエージェントに実装することの効果

本記事では、LLMマルチエージェントにお...
Read More

競争環境でのLLMエージェントが自発的に協力し始める現象を観測

本記事では、LLMエージェントが競争環境...
Read More

NVIDIAが教えるRAGチャットボット実装の重要ポイント

本記事では、NVIDIAによるRAGベー...
Read More

エージェント

LLMエージェントが実行可能なPythonコードを生成するフレームワーク『CodeAct』
Googleが開発した「LLMに長文を高精度で読解させる方法論」と実行プロンプト
プロンプトでLLMにRPAワークフローを自動生成させる手法「FlowMind」JPモルガン考案
LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
「ゲームでのLLM」における調査結果 プレイヤー・NPC・ゲームマスターなど様々な役割を網羅的に整理
「人間の自然言語を超えて」LLMにタスク実行時の思考を非自然言語フォーマットで行わせるプロンプト手法『AutoForm(オートフォーム)』
小さなLLMを多数組み合わせることで、単一の巨大モデルに匹敵する可能性
ユーザーの指示が曖昧なとき、LLM側が確認を行うエージェントアーキテクチャ『Mistral-Interact』

業界/カテゴリー

PAGE TOP