次回の更新記事:企業環境での自動バグ修復に向けたGoogleの取り組み(公開予定日:2025年01月21日)

Web3向けLLMエージェントOS登場 オープンソースの新フレームワーク

本記事では、Web3とエージェントの融合...
Read More

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

LLM

LLMに敢えて間違わせてルールを覚えさせるプロンプト手法 Google DeepMindなどが考案
ファインチューニングデータが十分に大きい場合、タスク性能向上に追加の事前学習は不要の可能性 Googleなどによるスケーリング則の実験から
GPT-4にRAG(検索拡張生成)を適用するケーススタディ 臨床問題で人間の医師よりも高い精度を達成
ナレッジグラフ(知識グラフ)とLLMを掛け合わせる方法のロードマップ
複数LLMに議論させ、「回答に自信がないときは発言を控えさせ」て応答品質を向上する方法
LLMの検索結果をさらに正確にする手法『CRAG』(Corrective Retrieval Augmented Generation:修正型の検索拡張生成)
LLMを軽くする効果的な剪定手法『SliceGPT』
RAGシステムに「無関係な」文書を混ぜたほうがLLMの出力精度が上がる可能性が示唆された
PAGE TOP