次回の更新記事:Web3向けLLMエージェントOS登場 オープンソースの新…(公開予定日:2025年01月20日)

生成AIシステムのセキュリティ評価 マイクロソフトが100事例から得た教訓

本記事では、マイクロソフトの研究チームに...
Read More

マルチモーダルLLMによる表やグラフの理解力を向上させる方法

表やグラフといった構造化された画像は、私...
Read More

LLMエージェントによって自然言語をゲーム理論モデルに変換する方法

本記事では、人間が思いついたゲーム理論的...
Read More

産業界における生成AIガイドラインを網羅したデータセット登場

本記事では、企業における大規模言語モデル...
Read More

LLMは個人の金銭管理を適切にサポートできるのか?

本記事では、LLMを利用した個人財務サポ...
Read More

長文コンテキスト

多くの「長いコンテキストを要するタスク」を、短いコンテキストウィンドウのLLMで解決する手法
GPT-4o、Gemini、Claude 3などにおける「長いプロンプトのマルチモーダルタスク」性能を測定した結果
Googleが開発した「LLMに長文を高精度で読解させる方法論」と実行プロンプト
LLMのプロンプトに数百から数千の例を含める超長尺のコンテキスト内学習(In-context learning)とファインチューニングの性能比較
LLMにおける、長いコンテキストから欲しい情報を見つけ出す「needle-in-a-haystack(干し草の中の針)」テスト結果とプロンプト例
どのLLMが最も長文要約性能が高いのか評価した実験結果 データセットと要約ノウハウも公開
LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
GPT-4やGeminiなどさまざまなLLMで、プロンプトの入力が長くなるにつれて推論性能に顕著な低下が見られる
PAGE TOP