最新の記事:科学は「研究」と「査読」両方が加速していく AIと…
「論文データベース(β版)」公開しました!新着論文を日本語で検索できます。ぜひご活用ください。 見てみる

LLMにハイレベルな問題の解決アプローチを自分で考えさせるエージェント化手法「SelfGoal」

2024.06.26
深堀り解説

特定の高難易度タスクにおけるLLMエージェントの性能を大幅に向上させる新しい手法SelfGoalが考案されました。最終目標をより実践的なサブゴールのツリー構造に分解し、状況に応じてサブゴールを更新するのが本手法の肝です。

参照論文情報

  • タイトル:SelfGoal: Your Language Agents Already Know How to Achieve High-level Goals
  • 著者:Ruihan Yang, Jiangjie Chen, Yikai Zhang, Siyu Yuan, Aili Chen, Kyle Richardson, Yanghua Xiao, Deqing Yang
  • 所属:Fudan University, Allen Institute for AI

背景

LLMエージェントは、ゲームやプログラミングなどの分野でよく利用されています。タスク固有の学習をすることなく、複雑で難易度の高いタスクを自動的に解決する技術として、注目されてきています。

しかし、LLMエージェントには、「ユーザーからの曖昧な指示に従えない」などの課題があります。例えば、「この勝負に勝ってください」や「お金を稼いでください」といった、抽象的な指示を与えても、エージェントはユーザーの意図を汲み取れず、タスクを遂行できないでしょう。

こうした課題を解決し、難易度の高いタスクを自動でLLMに解かせるために、既存の研究では主に以下の2つのアプローチが提案されてきました。

  • LLMの事前知識を利用して、最終タスク目標を細かなサブタスクに分解
  • タスクの遂行中に、LLMの事前知識を引っ張り出して有効活用すること

しかし、前者のアプローチだと、環境要因の変化によって、解くべきサブタスクを調整することができず、柔軟性に欠けるという問題が発生します。また、後者のアプローチだと、事前知識から導かれる行動が、そもそも単純で体系的でないため、適切なアクションを起こせないという問題が発生します。

そのため、環境要因の変化に応じて、その都度最適なアプローチを模索しながら、柔軟にサブタスクを変更する必要があるのです。

そこで今回研究者らは、最終のタスク目標をツリー構造のサブゴールに分解し、エージェントのおかれた状況に応じて最も有用なサブゴールを特定しながら、ツリーを段階的に更新していく「SelfGoal」という手法を提案しています。

以下では、このSelfGoalについて詳しく解説します。

プレミアム会員限定コンテンツです

無料会員でもできること

  • 一部記事の閲覧
  • 研究紹介短信ライブラリの基本機能
  • プロンプト管理ツールの利用

プレミアム会員の特典

  • 全過去記事の無制限閲覧
  • 専門家による最新リサーチ結果を記事で購読(平日毎日更新)
  • 日本語検索対応の新着AI論文データベース
  • 研究紹介短信ライブラリの高度な機能を開放
  • 記事内容質問AIを使用可能に
  • プロンプト管理ツールの無制限使用

記事検索

年/月/日
年/月/日

関連記事