最新の記事:科学は「研究」と「査読」両方が加速していく AIと…
「論文データベース(β版)」公開しました!新着論文を日本語で検索できます。ぜひご活用ください。 見てみる

大規模言語モデルが音声をダイレクトに理解する能力を与える Metaとケンブリッジ大

2023.07.31
深堀り解説

これまでの大規模言語モデルは基本的にテキストデータのみを扱うことが前提でした。Metaとケンブリッジ大学の研究者チームは、この限界を打破する新たな手法を提案しました。

参照論文情報

  • タイトル:Prompting Large Language Models with Speech Recognition Abilities
  • 著者:Yassir Fathullah, Chunyang Wu et al.
  • 所属:Meta AI、ケンブリッジ大学
  • URL:https://doi.org/10.48550/arXiv.2307.11795

関連研究

音声データを直接理解するAI

研究の目的と手法

この研究の主要な目的は、大規模言語モデルが音声データを直接理解し、それに対応する形で反応する能力を付与することです。従来のAIは、音声データをテキストデータに変換することで理解していました。しかし、この研究では新たなアプローチを採用し、音声データとその対応するテキストデータを訓練データに組み込むことで、大規模言語モデルが音声データをテキストデータに変換することなく、直接音声データを理解する能力を付与します。

音声データの取り扱い

これまでの大規模言語モデルはテキストデータのみを扱うことが前提でしたが、この研究により、音声データを直接扱うことが可能になりました。これは、AIが人間の音声をより直接的に、より高精度に理解する新たな局面を開くことを意味します。

音声データの直接的な理解は、AIの応用範囲を大幅に広げる可能性があります。例えば、音声を直接理解することで、音声のニュアンスや感情をより正確に捉えることが可能となり、より自然な対話を実現することが期待できます。また、音声データの直接的な理解は、音声認識の誤りを減らすことにも寄与する可能性があります。

中間ステップを飛ばす

音声とテキストの直接的な関連性

この研究の中心的な技術は、音声とテキストの間に直接的な関連性を構築することです。これまでの一般的な手法では、音声をテキストに変換するために、音声認識(ASR)という中間ステップが必要でした。しかし、この新しいアプローチでは、ASRを介さずに音声から直接情報を抽出することが可能になります。これにより、音声データの理解と処理がより効率的かつ精密に行えるようになります。

オーディオエンコーダのアーキテクチャ

データの前処理と学習

この技術では、音声データを大規模言語モデルが理解できる形に前処理します。具体的には、音声データをメルスペクトログラムに変換し、その後、トークン化します。これにより、音声データが言語モデルにとって扱いやすい形になります。そして、この前処理されたデータを用いて、言語モデルは学習を行います。

モデル・アーキテクチャ

音声をダイレクトに扱いパフォーマンスアップ

プレミアム会員限定コンテンツです

無料会員でもできること

  • 一部記事の閲覧
  • 研究紹介短信ライブラリの基本機能
  • プロンプト管理ツールの利用

プレミアム会員の特典

  • 全過去記事の無制限閲覧
  • 専門家による最新リサーチ結果を記事で購読(平日毎日更新)
  • 日本語検索対応の新着AI論文データベース
  • 研究紹介短信ライブラリの高度な機能を開放
  • 記事内容質問AIを使用可能に
  • プロンプト管理ツールの無制限使用

記事検索

年/月/日
年/月/日

関連記事