多くの女性を救うテクノロジーの最先端に刮目。
女性のがんにおいて罹患数トップの「乳がん」
乳がんは、女性において罹患数がトップのがんであり、全体の約20%を占めている。また、女性のがんによる死亡率の全体の10%を占めている。このように、乳がんは女性にとって重大な疾患であるが、早期発見により適切な治療が行われれば、良好な経過が期待できるとされている。
乳がんの検出とモニタリングでは、マイクロ波イメージングが利用される。マイクロ波乳房イメージング技術は、正常な乳房組織(例えば、皮膚、脂肪、線維腺など)と悪性腫瘍の異なる誘電特性を利用し、乳房組織の誘電率の画像を生成する。
重要なお知らせ:AI分野のお仕事マッチングサービス「AIDB HR」を開始しました!登録後はオファーを受け取るだけのシンプルなサービスです!現在、期間限定で、ギフト券が必ずもらえる新規登録キャンペーンも行っています。
しかし、画像を生成するための主なアプローチは計算コストが高く、複雑な電磁散乱または超音波散乱問題の数値解で構成されている。このようなアプローチは長年にわたって改善され、画像の解像度と精度は向上し、より効率的な実装が可能になったが、運用上、財政上、物理的な制約のため、これら3つの側面の間にはまだ多くの基本的なトレードオフが存在する。
そんな課題に、乳がんの検出にカナダにあるマニトバ大学のVahab Khoshdelら研究者が取り組んだ。
彼らは、マイクロ波乳房イメージング技術による乳がんの検出精度の向上という課題に着目し、U-Netアーキテクチャをベースとした畳み込みニューラルネットワーク(CNN)を提案した。
結果、精度は向上しただろうか?続きを読んでみよう。
マイクロ波乳房イメージングとCNNによる乳がん検出
まずはVahab Khoshdelらの研究におけるミッション・手法・結果をまとめた。
また記事の購読には、アカウント作成後の決済が必要です。
※ログイン/初回登録後、下記ボタンを押してください。
AIDBとは
プレミアム会員(記事の購読)について
■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。