材料開発の進歩−CNNで画像改善!【AI論文】

   
★AIDB会員限定Discordを開設いたしました! ログインの上、マイページをご覧ください。

★企業と人材のマッチングサービスを準備中です。アンケートのご協力をお願いいたします!↓

畳み込みニューラルネットワークを用いると、画像の中で「十分に見えていない」領域が補完されるという。

https://youtu.be/YRhxdVk_sIs

AIDBの全記事が読み放題のプレミアム会員登録はこちらから↓

その技術が、材料開発の現場を助けるかもしれない!

(Featured AI and materials) Machine learning technique of the domain division of the tomogram image data in the functional material (Publication)

Furat O, Wang M, Neumann M, Petrich L, Weber M, Krill CE III and Schmidt V, “Machine Learning Techniques for the Segmentation of Tomographic Image Data of Functional Materials”. Front. Mater.6:145 (2019). について

DOI: 10.3389/fmats.2019.00145

3つの要点

✔️CT画像をさらに綺麗にするための技術革新。

✔️CNN技術を用いた画像の微細化。

✔️CTと3DXRDを組み合わせることによる品質向上。

概説

当サイトの利用にはAIDBのアカウントが必要です。
また記事の購読には、アカウント作成後の決済が必要です。



※ログイン/初回登録後、下記ボタンを押してください。

AIDBとは
プレミアム会員(記事の購読)について







■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。






業界/カテゴリー

PAGE TOP