Metaの研究者ら「GPT-4をきびしくサポートする」AIのShepherd(シェパード)開発

   

この記事では、Metaの研究である「Shepherd」について紹介します。Shepherdは、GPT-4などテキスト生成AIに対する批評家として機能するモデルです。この記事では、Shepherdの全体的な概要、技術的な側面、有効性の検証、議論、そしてその意義について紹介します。

参照論文情報

重要なお知らせ:AI分野のお仕事マッチングサービス「AIDB HR」を開始しました!登録後はオファーを受け取るだけのシンプルなサービスです!現在、期間限定で、ギフト券が必ずもらえる新規登録キャンペーンも行っています。



関連研究

Shepherdとは何か?:モデルの概要と目的

Shepherdは、GPT-4などテキスト生成AIに対する批評家として機能するモデルです。特定の問題を指摘し、改善のための具体的な提案を行うことができます。

このモデルは、事実の正確性、論理的な誤り、一貫性、整合性などの特定の問題を特定し、深いドメイン知識から具体的な改善案を提供することができます。

Shepherdのフィードバックイメージ

モデル開発の背景

大規模言語モデルが進化するにつれて、自己改善の技術への関心が高まっています。ロバストな批評モデルを構築し、より広い範囲のドメインでフィードバックを提供する仕組みの構築が求められるようになりました。そんな中で、Shepherdは、LLMがしばしば生成する「誤った、信頼性のない、非一貫な出力」を批評し、改善するために作られました。

Shepherdの機能と性能

Shepherdは、有用なフィードバックを提供する能力を持っています。全体的な判断や一般的な提案だけでなく、具体的なアイデアも提供します。

複数の下流タスクでChatGPT(OpenAI, 2022)モデルを上回る印象的な結果を示しています。コミュニティフィードバックと人間による注釈付きフィードバックの影響の詳細な検査で、Shepherdの効果が確認されています。

Shepherdの技術面

データ収集

Shepherdの訓練データは、以下から収集されました。

当サイトの利用にはAIDBのアカウントが必要です。
また記事の購読には、アカウント作成後の決済が必要です。



※ログイン/初回登録後、下記ボタンを押してください。

AIDBとは
プレミアム会員(記事の購読)について









■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。






PAGE TOP