こんにちは、ぽめた (@pometa0507) です。社会人エンジニアとして働く傍ら、AI資格の「E資格」取得に向けてディープラーニングの勉強をしています。
この連載は、E資格の勉強中に学んだ内容を記事としてまとめるものです。 E資格を受験される方のおさらいや、E資格に興味のある方の参考となれば幸いです。
重要なお知らせ:AI分野のお仕事マッチングサービス「AIDB HR」を開始しました!登録後はオファーを受け取るだけのシンプルなサービスです!現在、期間限定で、ギフト券が必ずもらえる新規登録キャンペーンも行っています。
前回の記事(Day4)では、隠れユニットの活性化関数の続きとしてReLUの一般化について取り上げました。今回のDay5では、「出力ユニット」について紹介します。
これまでの記事
Day1の記事「ディープラーニングの概要」
Day2の記事「パーセプトロン」
Day3の記事「活性化関数」
Day4の記事「ReLUの一般化」
隠れユニットと出力ユニット
まずは、ニューラルネットワークの順伝搬処理について振り返ってみます。順伝搬とは、ニューラルネットワークの入力から出力まで順番にデータを伝搬させる処理のことでした(推論で用いられる処理ですね)。
次の層へのデータ伝搬は基本的に、アフィン変換+活性化関数によって行われます。
ここでニューラルネットワークの中間層と出力層で利用する関数をそれぞれ「隠れユニット」と「出力ユニット」と呼びます。
下の図で緑色の〇が隠れユニットで、赤色の〇が出力ユニットにあたります。
また記事の購読には、アカウント作成後の決済が必要です。
※ログイン/初回登録後、下記ボタンを押してください。
AIDBとは
プレミアム会員(記事の購読)について
■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。