次回の更新記事:LLMは個人の金銭管理を適切にサポートできるのか?(公開予定日:2025年01月06日)

多くの「長いコンテキストを要するタスク」を、短いコンテキストウィンドウのLLMで解決する手法

   

長いコンテキストのタスクに対し、短いプロンプトのみ処理できるモデルでも取り組める「LC-Boost」フレームワークが考案されました。

【告知】AIDB HRの人材側登録者全員に対し、業界研究の手間を削減できるように「AI事業を行う企業リスト」を配布します。無料登録後すぐに閲覧とダウンロードが可能です。▼



参照論文情報

  • タイトル:Are Long-LLMs A Necessity For Long-Context Tasks?
  • 著者:Hongjin Qian, Zheng Liu, Peitian Zhang, Kelong Mao, Yujia Zhou, Xu Chen, Zhicheng Dou
  • 所属:Renmin University of China, Beijing Academy of Artificial Intelligence

背景

最近、長文の質問応答や要約などのタスクにLLMが活用されるようになってきました。しかし、一部のモデルは長いプロンプトを処理できるようになっていますが、既存のLLMの多くは、限られた長さのコンテキストしか処理できないという制約があります。

一般的に、LLMのコンテキストウィンドウを拡張すれば長いコンテキストへの対応が可能になります。しかしモデルの学習や適用に膨大なコストがかかるだけでなく、短いコンテキストに対する汎用性が損なわれる恐れもあります。そこで、長いコンテキストを短いコンテキストに分解することで、効率的に長いコンテキストのタスクを解決できないかという発想が生まれました。

こうした背景から、短いコンテキストのみ処理するLLMを用いて長いコンテキストのタスクに取り組む新たな手法LC-Boost(Long-Context Bootstrapper)が考案されました。

当サイトの利用にはAIDBのアカウントが必要です。
また記事の購読には、アカウント作成後の決済が必要です。



※ログイン/初回登録後、下記ボタンを押してください。

AIDBとは
プレミアム会員(記事の購読)について


■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。






PAGE TOP