LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』

   

モデルに学習データを追加するよりも安価に成果が得られ、カスタマイズも柔軟です。

Amazonなどの研究者らによる発表です。

@ Yijun Tian et al., “Graph Neural Prompting with Large Language Models”

重要なお知らせ:AI分野のお仕事マッチングサービス「AIDB HR」を開始しました!登録後はオファーを受け取るだけのシンプルなサービスです!現在、期間限定で、ギフト券が必ずもらえる新規登録キャンペーンも行っています。



「LLMに正確な知識を出力させたい」という願いが切望されていますが、仮に知識グラフを用いてモデルを強化すればコストは膨大になります。

そこで研究者らは外部の知識グラフとシームレスに接続するフレームワーク『GNP』を考案しました。

本稿は論文の簡単な紹介記事です。詳細記事はこちら↓
LLMにナレッジグラフ(知識グラフ)を連携させることで、タスク遂行能力を大幅に向上させるフレームワーク『Graph Neural Prompting(GNP)』

GNPの方法論

当サイトの利用にはAIDBのアカウントが必要です。
また記事の購読には、アカウント作成後の決済が必要です。



※ログイン/初回登録後、下記ボタンを押してください。

AIDBとは
プレミアム会員(記事の購読)について


■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。






PAGE TOP