最新の記事:科学は「研究」と「査読」両方が加速していく AIと…
「論文データベース(β版)」公開しました!新着論文を日本語で検索できます。ぜひご活用ください。 見てみる

大規模言語モデルに16,000以上のAPIを理解し適切に操作する能力を与える「ToolLLM」

2023.08.02
深堀り解説

近年、大規模言語モデルは、その能力を発揮し、人間と同等のパフォーマンスを達成することができるようになりました。しかし、それでもまだ解決すべき課題があります。今回紹介する研究は、大規模言語モデルが実世界のAPIを理解し、適切に操作する能力を与えることで、課題解決能力を上げるものとなります。

参照論文情報

関連研究

ToolLLMとは何か?

ToolLLMは、大規模言語モデルが実世界のAPIを理解し、適切に操作する能力を向上させるためのフレームワークです。具体的には、16,000以上のAPIを理解し、それらを適切に操作することができます。

ToolLLMの目指すものは、大規模言語モデルがAPIを自然言語で理解し、それに基づいてAPIを操作することです。その結果、大規模言語モデルは、より具体的なタスクを達成する能力を獲得します。

この研究では、ToolBench、ToolLLaMA、およびToolLLMという三つの主要なコンポーネントが提唱されています。それぞれの役割と関係性について説明します。

  • ToolBench: チューニングデータセットの構築を助けるフレームワークです。具体的には、16,464の実世界のRESTful APIをRapidAPIから収集し、それらを使用する多様な人間の指示を生成します。さらに、各指示に対する有効な解決策パス(API呼び出しの連鎖)を検索します。
  • ToolLLaMA: ToolBenchで提供されるデータセットを用いてLLaMAモデルを微調整した結果生まれたモデルです。ToolLLaMAは、特定の指示を実行するための具体的なAPI呼び出しを生成し、その結果を解釈する能力を持っています。
  • ToolLLM: この研究全体を表す用語です。大規模言語モデル(LLM)を用いて実世界のAPIを理解し、操作する能力を持つ一般的なツール使用フレームワークを指します。ToolLLMは、ToolBenchによるデータ構築、ToolLLaMAの訓練、および評価(ToolEval)を含む一連のプロセスを指します。

これらの用語は、それぞれ異なる役割を果たし、ToolLLMフレームワーク全体の一部を形成しています。

ToolBench構築の3つのフェーズ。

ToolLLMの技術的な特徴

APIの理解と深化

ToolLLMは、APIのドキュメンテーションを自然言語処理によって理解する能力を持っています。この理解は、APIの機能や使用方法を把握するための基礎となります。さらに、ToolLLMはAPIのドキュメンテーションをただ理解するだけでなく、その内容を深化させることも可能です。これは、APIのドキュメンテーションに書かれていない情報を推測し、APIの使用方法をより広範に理解するための手法です。

APIの操作と最適化

APIの操作は、理解したAPIのドキュメンテーションに基づいて行われます。ToolLLMは、APIの呼び出し方を学習し、それを基にAPIを操作します。さらに、ToolLLMはAPIの操作を最適化することも可能です。これは、APIの呼び出し方を学習する過程で得られた知識を活用し、APIの操作をより効率的に行うための手法です。

大規模言語モデルとの連携

ToolLLMは、大規模言語モデルと連携して動作します。大規模言語モデルは、自然言語の理解能力を活用してAPIのドキュメンテーションを理解し、ToolLLMはその理解を基にAPIを操作します。この連携により、ToolLLMは大規模言語モデルが持つ広範な知識と理解能力を活用して、APIの操作をより効果的に行うことが可能になります。

ToolLLMは本当に使えるものなのか

プレミアム会員限定コンテンツです

無料会員でもできること

  • 一部記事の閲覧
  • 研究紹介短信ライブラリの基本機能
  • プロンプト管理ツールの利用

プレミアム会員の特典

  • 全過去記事の無制限閲覧
  • 専門家による最新リサーチ結果を記事で購読(平日毎日更新)
  • 日本語検索対応の新着AI論文データベース
  • 研究紹介短信ライブラリの高度な機能を開放
  • 記事内容質問AIを使用可能に
  • プロンプト管理ツールの無制限使用

記事検索

年/月/日
年/月/日

関連記事