DTI予測に機械学習手法が注目されている
創薬の最初のステップとして重要なのは、薬物と標的の相互作用(DTI)の特定だ。DTIを特定する上で、試験管内で行うin vitro実験では、多大な費用と時間がかかる。そうした中、医薬品開発プロセスを大幅にスピードアップさせる有望な戦略として、 DTI予測に関する高効率な計算手法の開発が注目されている。
DTI予測における主な課題は、薬剤と標的タンパク質との相互作用に関するノウハウの不足である。DTIを予測するための計算方法として、豊富な生物学的データを最大限に活用できるケモゲノミクスアプローチがある。このケモゲノミクスアプローチの中でも、機械学習に基づいた手法は、信頼性の高い予測結果を示し、近年注目を集めている。
中国にあるアモイ大学のR. Chenら研究者は、DTI予測に適用される機械学習手法に焦点を当て、分類される各カテゴリーの特徴を総合的に分析し、DTI予測における現在の機械学習手法の課題と展望を探った。
その結果、何が分かっただろうか?続きを読んでみよう。
また記事の購読には、アカウント作成後の決済が必要です。
※ログイン/初回登録後、下記ボタンを押してください。
AIDBとは
プレミアム会員(記事の購読)について
■サポートのお願い
AIDBを便利だと思っていただけた方に、任意の金額でサポートしていただけますと幸いです。