Self-Reflection(自己反省)がLLMのパフォーマンスに与える影響を網羅的に調査

この記事では、LLMが自分自身の行動を反...
Read More

LLMの推論能力を戦略的に向上させる新しいプロンプト手法『SCoT』

この記事では、LLMの推論能力を向上させ...
Read More

ロングコンテキストLLM台頭の今もRAGを使用する理由

この記事では、LLMが長い文章を理解でき...
Read More

論文

LLMの化学的能力はどれほどか 最先端LLMと人間を比較した結果
ハーバード大学の研究者らによる「現時点で、AIは研究にどう役立つのか」調査と論考
LLMが生成した長いテキストにおける「事実性」を自動で評価するLLMエージェントフレームワーク『SAFE』Google DeepMindが開発
RAG(検索拡張生成)において約半分のトークン数でタスクを実行できるフレームワーク『FIT-RAG』
「ゲームでのLLM」における調査結果 プレイヤー・NPC・ゲームマスターなど様々な役割を網羅的に整理
人はディベートで人よりもGPT-4が相手のとき81.7%高い確率で意見を変える(つまり討論に負ける)傾向にあったとの実験報告
RAGにおいてLLMが「役立たない情報を無視」できるようにする『RAFT』QAタスクで従来の手法を大幅に上回る結果を達成
Microsoftなどのプロンプト圧縮技術『LLMLingua-“2″』タスクの精度を維持したまま圧縮率2-5倍

業界/カテゴリー

PAGE TOP