次回の更新記事:LLMと進めるソフトウェア設計の段階的アプローチ(公開予定日:2025年07月07日)

ニュース

JPモルガンの研究者らは、企業のドキュメントをLLMで読み込むモデル『DocLLM』を発表しました。
視覚・テキスト・音声そして行動データを処理するマルチモーダルLLM「Unified-IO 2」を開発したと報告されています。
Tencentの研究者らが、人間のようにタップやスワイプでスマホアプリを操作するAIエージェント『AppAgent』を開発したと報告しています。
オセロで「完璧な手を打ち続けた結果は引き分けである」ことを証明する研究が発表されました。
現時点でのLLMに対する網羅的な評価分析が行われました。
LLMと遺伝的アルゴリズムを使用して、個性によって社会集団の行動がどのように変化していくのかを観察する挑戦的な研究が行われました。
特定の個人の好みやニーズに最も適したレスポンスや行動を行うLLMを開発する手法、『Personalized Soups(意訳:ぼくだけのためのスープ)』が開発されました。
「DALL-E 3はどうしてユーザーの意図を正確に汲み取ることができるのか?」に対するOpenAIの論文が発表されました。
電気回路図などの図表をテキストのみから生み出すLLM駆動のフレームワーク『DiagrammerGPT(ダイアグラマーGPT)』が登場しました。
GPT-4との対話でタスクプランニングを行うロボットシステムフレームワークが発明されました。
GPT-4などLLMのコード生成能力にデバッグ機能を追加する『SELF-DEBUGGING(セルフデバッギング)』フレームワークが考案されました。
LLMがソフトウェアエンジリアリングにおいて現時点で役に立つこと&課題。Metaなどの研究者らが報告
OpenAIは、DALL·E 3の論文を通して「画像生成AIの安全性は前進した」ことを報告しています。
【最新版】社会人が人工知能(AI)を勉強できる大学講座一覧
【ニューラルポケットCTO】AIの社会実装を進めるための技術的ポイントをズバリ指摘

プロフィールを登録すると
仕事のオファーが届きます

プロフィール登録
PAGE TOP